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During the past century, few proteins have matched erythropoietin (Epo) in capturing the
imagination of physiologists, molecular biologists, and, more recently, physicians and pa-
tients. Its appeal rests on its commanding role as the premier erythroid cytokine, the elegant
mechanism underlying the regulation of its gene, and its remarkable impact as a therapeutic
agent, arguably the most successful drug spawned by the revolution in recombinant DNA
technology. This concise review will begin with a synopsis of the colorful history of this
protein, culminating in its purification and molecular cloning. It then covers in more detail
the contemporary understanding of Epo’s physiology as well as its structure and interaction
with its receptor. A major part of this article focuses on the regulation of the Epo gene and the
discovery of HIF, a transcription factor that plays a cardinal role in molecular adaptation to
hypoxia. In the concluding section, a synopsis of Epo’s role in disorders of red blood cell
production will be followed byan assessment of the remarkable impact of Epo therapy in the
treatment of anemias, as well as concerns that provide a strong impetus for the development
of even safer and more effective treatment.

In 1890, Viault (1890) observed that 2 weeks
after traveling in Peru from sea level (Lima) to

the mountain area of Morococha (4200 m) his
red blood cell count went from 5.0 million to 7.1
million/mm3. Values of five other sojourners in
his party ranged from 7.1 to 8.0 million. These
simple observations provided the first convinc-
ing demonstration of the robust burst of ery-
thropoiesis in man soon after exposure to high
altitude hypoxia. During the transition into the
next millennium the mechanism underlying
this phenomenon became a topic of heated de-
bate. Friedrich Miescher (1893), well known for
his discovery of DNA, proposed that a decrease
in oxygen tension within the bone marrow
provided a direct stimulus to erythroid cells. A

half-century elapsed before this theory was dis-
proven by carefully executed measurements of
oxygen saturation in bone marrow specimens
of patients with erythrocytosis, both primary
(Berk et al. 1948) and secondary (Stohlman
et al. 1954).

In 1906, Carnot and Deflandre (1906) pro-
posed an alternate mechanism for hypoxic in-
duction of erythropoiesis. They observed an
increase in red blood cell counts following in-
fusion of normal rabbits with serum from ane-
mic animals and concluded that erythropoiesis
is regulated by a humoral “factor” in the plasma.
Attempts to reproduce this experiment over the
ensuing decades yielded equivocal or negative
results, thus casting doubt on this hypothesis.
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However, in the middle of the twentieth century,
Krumdieck (1943) and Erslev (1953) modified
the experimental design of Carnot and De-
flandre by the addition of accurate measure-
ments of reticulocytes and convincingly showed
in rabbits the induction of new red cell produc-
tion within 3–6 days following injection of ane-
mic serum injected.

The notion that hypoxic stimulation of
erythropoiesis involved an indirect humoral
mechanism was strongly buttressed by experi-
ments of Reissmann (1950) and Ruhenstroth-
Bauer (1950). They used parabiotic pairs of rats
whose circulations were connected at the capil-
lary level by overlapping flaps of skin and ele-
gantly showed that when one rat was exposed to
low oxygen tension, whereas the other breathed
room air and remained normoxic, both animals
developed a surge of new red cell production
and erythrocytosis.

Taken together, these studies led to the con-
ception of a circulating erythroid-stimulating
hormone, “erythropoietin” (Epo). Organ abla-
tion studies in rats (Jacobson et al. 1957) and
man (Nathan et al. 1964) firmly established
that the kidney was the major site but not the
sole site of Epo production. These findings led
Eugene Goldwasser and his colleagues to under-
take an intense and prolonged effort to isolate
Epo. Initial attempts to obtain Epo from kidneys
were unsuccessful owing to the release of pro-
teolytic enzymes during tissue homogenization.
In the search for a more tractable source of Epo,
Goldwasser first turned to plasma of anemia
sheep, then to urine from Argentinians with se-
vere iron deficiency owing to hookworm infes-
tation, and finally to urine from Japanese pa-
tients with aplastic anemia. This 15-year
endeavor was greatly facilitated by the develop-
ment of a sensitive and specific assay using in-
corporation of radio-labeled iron into newly
produced red cells (Fried et al. 1956). By 1977,
Goldwasser and his team were able to prepare
8 mg of highly purified human Epo (Miyake
et al. 1977). Amino-terminal amino acid se-
quencing of this preparation enabled the syn-
thesis of semidegenerate oligonucleotide probes
that could then be used for the molecular clon-
ing of the Epo gene (Jacobs et al. 1985; Lin et al.

1985). This advance opened up a new era in the
exploration of the physiology and molecular bi-
ology of Epo and was exploited in the develop-
ment of recombinant human Epo as a thera-
peutic agent for patients with various types of
anemia.

For more detailed information on the his-
tory of Epo, see reviews by Grant and Root
(1952), Erslev (1980, 1993), and Goldwasser
(1996).

PHYSIOLOGY1

In humans and other mammals, erythropoiesis
normally proceeds at a low basal rate, replacing
senescent red blood cells with young reticulo-
cytes. In humans, red cell production can be
enhanced as much as eightfold the baseline
rate in a variety of clinical settings including
hemorrhage, hemolysis, and other types of
stress that impair the oxygenation of arterial
blood or the delivery of oxygen to the tissues.
Epo is the primary, and probably the sole me-
diator of hypoxic induction of erythropoiesis.
During fetal development, Epo is produced
mainly in the liver. However, in keeping with
the above-mentioned report of Jacobson et al.
(1957), following birth, the kidney accounts for
�80% of Epo production. Realizing that renal
cortical blood flow closely matches oxygen con-
sumption, Erslev et al. (1985) proposed that the
proximal tubule is the ideal location for Epo
production. In situ hybridization studies have
indeed shown that Epo mRNA expression in
the kidney is localized to a subset of peritubular
fibroblasts in the cortex close to the boundary
with the medulla (Koury et al. 1988, 1989; La-
combe et al. 1988; Bachmann et al. 1993; Max-
well et al. 1993a). In the liver, Epo is produced
both in hepatocytes and in interstitial cells
(Koury et al. 1991; Schuster et al. 1992). The
latter have been shown to be Ito presinusoidal
cells (Maxwell et al. 1994). In both Ito cells and
the above-mentioned renal fibroblasts, in situ
expression of Epo correlates with that of ecto-

1For more information on all aspects of erythropoietin, see
the recent detailed and comprehensive review by Wenger
and Kurtz (2011).
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50-nucleotidase, probably because this enzyme is
also controlled by local oxygen tension (Schmid
et al. 1994).

The notion that Epo production is markedly
up-regulated by hypoxia and that it stimulates
erythropoiesis in a dose-dependent manner led

to the now well accepted paradigm of a negative
feedback loop, similar to those underlying the
regulation of blood glucose by insulin and of
peripheral endocrine hormones by pituitary
tropins. As shown in Figure 1A, hypoxia induces
an increase in Epo hormone production in the
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Figure 1. Regulation of red cell production by Epo. (A) Decreased oxygen delivery to specialized cells in the
kidney results in increased expression and secretion of Epo, which circulates in the plasma and stimulates
marrow progenitors, thereby increasing red cell production. If the increase in red cell mass relieves the hypoxic
signal, Epo expression is down-regulated. (B) Plasma Epo levels (milliunits/mL) in patients with different types
of and degrees of anemia and in those with primary erythrocytosis and secondary erythrocytosis. HIF, hypoxia
inducible factor; PCV, polycythemia vera.
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kidney, which then circulates in the plasma and
binds to receptors abundantly expressed on ery-
throid progenitor cells, thereby promoting the
viability, proliferation, and terminal differenti-
ation of erythroid precursors, and causing an
increase in red blood cell mass. The oxygen-car-
rying capacity of the blood is thereby enhanced,
increasing tissue oxygen tension, thus complet-
ing the feedback loop and suppressing further
expression of Epo.

Further insight into the physiology of Epo
production has come from measurements of
plasma levels in normal individuals as well as
in those with different types of anemia and er-
ythrocytosis (Erslev et al. 1987). These studies
became more conclusive with the development
of accurate immune assays. Figure 1B depicts
plasma Epo levels in normal individuals as
well as in those with different types of anemia
of varying degree. Note that the plasma Epo
levels are plotted on a logarithmic scale. In pa-
tients with very severe anemia, Epo may be in-
creased up to 1000-fold. The striking inverse
relationship between plasma Epo levels and he-
matocrit or hemoglobin is seen in many differ-
ent types of anemia, including blood loss, im-
paired red cell production, and hemolysis.

BIOCHEMISTRY AND CELL BIOLOGY2

Structure

The molecular cloning of the Epo gene led
straightaway to high-level production of recom-
binant human erythropoietin (rhEpo) in cell
culture in sufficient purity and quantity for
both definitive scientific pursuits and the devel-
opment of therapy (discussed at the end of this
article). Human Epo messenger RNA (mRNA)
encodes a 193-residue polypeptide. Following
cleavage of a canonical leader sequence in the
endoplasmic reticulum and glycosylation in
the Golgi, a 166-residue polypeptide is released
(Jacobs et al. 1985; Lin et al. 1985). The primary
structure of rhEpo was shown to be identical to

that of the endogenous hormone except for the
in vivo posttranslational cleavage of an arginine
at the carboxyl terminus. Endogenous Epo and
rhEpo have about 40% carbohydrate (w/w) of
very similar structure, consisting of three N-
linked polysaccharide groups and one O-linked
group. Glycosylation of Epo slightly impedes its
biological activity but is essential for ensuring
prolonged circulation in the plasma (Gold-
wasser et al. 1974).

From its primary structure it was predicted
that Epo, like other hematopoietic cytokines,
folds into a globular three-dimensional struc-
ture consisting of a bundle of four amphipathic
a helices connected by loops lacking second-
ary structure and stabilized by a critical disul-
phide bridge between the amino-terminal and
carboxy-terminal helices (Bazan 1990; Boissel
et al. 1993). This prediction was borne out by
nuclear magnetic resonance spectroscopy of
Epo in solution (Cheetham et al. 1998) as well
as by X-ray crystallographic analysis of Epo in a
complex with two extracellular domains of the
Epo receptor (Syed et al. 1998).

Interaction with EpoR

Epo circulates in plasma with a plasma half-
life of �7–8 h and binds to high-affinity
(�100 pM) receptors present in relatively small
numbers (�1000/cell) on the surface of ery-
throid progenitor cells (CFUe) in the bone mar-
row. The receptor-binding domains on the sur-
face of Epo that were predicted from the
properties of site-directed mutants (Wen et al.
1994; Elliott et al. 1996, 1997) have been con-
firmed and extended by structural analysis
(Syed et al. 1998; Remy et al. 1999). EpoR is
present on the surface of erythroid progenitors
as a homodimer, even in the absence of ligand
(Livnah et al. 1999). As shown in Figure 2, on
binding to Epo, the receptor undergoes a con-
formational change that brings its intracellular
domains into close apposition (Livnah et al.
1999; Remy et al. 1999), enabling cross phos-
phorylation via the binding of Jak2 kinase and
the initiation of the signal transduction cascade.

The growth of CFUe in vitro was shown to
be Epo dependent (McLeod et al. 1974). Ligand

2For more detailed information on Epo structure, interac-
tion with receptor, and signal transduction, see review by
Jelkmann and Wagner (2004).
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binding results in salvaging CFUe from apopto-
sis (Koury and Bondurant 1990) thereby en-
abling proliferation of erythroid cells as well as
induction of terminal differentiation. The find-
ing that both Epo mRNA and Epo protein are
expressed in erythroid progenitors (Hermine
et al. 1991; Stopka et al. 1998) has raised the
intriguing possibility that tonic low-level ery-
thropoiesis may be supported by autocrine
stimulation, whereas circulating (hormonal)
Epo provides a more robust stimulus to eryth-
ropoiesis during hypoxic stress.

In man, Epo’s hematopoietic role appears to
be restricted to the erythron, whereas in rodents,
Epo stimulates megakaryocyte proliferation and
maturation as well (Clark and Dessypris 1986;
McDonald et al. 1987; Berridge et al. 1988).

NONHEMATOPOIETIC EFFECTS OF Epo3

As stressed in the sections above, by far the most
abundant sites of Epo production are the kidney
and liver, whereas expression of EpoR is vastly
more robust in marrow erythroid progenitors

than in other cells. However, it has become in-
creasingly evident that Epo has significant bio-
logical effects apart from regulation of red cell
production. Attention has focused primarily on
the central nervous system along with the heart,
kidney, liver, and vasculature.

Within the brain, Epo and Epo-receptor
mRNA are expressed widely (Tan et al. 1991;
Masuda et al. 1994; Digicaylioglu et al. 1995;
Sakanaka et al. 1998) and throughout develop-
ment (Dame et al. 2000) in neurons, astrocytes,
and endothelial cells (Yamaji et al. 1996). In con-
trast, demonstration of Epo and EpoR protein
expression in situ has been considerably more
challenging and less convincing. Oxygen-regu-
lated expression of Epo has been observed in
astrocytes both in vitro (Masuda et al. 1994;
Marti et al. 1996) and in vivo (Tan et al. 1991;
Marti et al. 1996), suggesting the possibility of a
paracrine function for Epo in neural tissue.

The most compelling evidence of the im-
portance of Epo signaling in the central nervous
system comes from two independent sources.
Targeted knockout of EpoR expression in the
mouse brain has shown reduced neural cell pro-
liferation and impaired poststroke neurogenesis
(Tsai et al. 2006). Although global deletion of
EpoR is lethal to mouse embryos, rescue by
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Figure 2. Epo-dependent signaling. When Epo binds to its dimeric receptor (EpoR) on erythroid progenitor
cells, the two receptor monomers are pulled together allowing phosphorylation of JAK2 kinase, which initiates
the signal transduction cascade.

3For more information on this topic, see review by Noguchi
et al. (2008).
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expression of erythroid-specific EpoR results in
survival to adulthood (Suzuki et al. 2002) but
impaired neural cell proliferation and viability
(Chen et al. 2007). In addition, administration
of Epo protects against experimental brain in-
jury in vivo (Sakanaka et al. 1998; Brines et al.
2000). Moreover, structural derivatives of Epo
that lack erythroid stimulating activity have
been shown to confer neuroprotection in animal
models of stroke, spinal chord compression, di-
abetic neuropathy, and autoimmume enceph-
alomyelitis (Leist et al. 2004). In a preliminary
trial in patients with acute stroke, recombinant
human erythropoietin (rhEpo) therapy was well
tolerated and readily penetrated the blood–
brain barrier (Ehrenreich et al. 2002). The au-
thors’ cbservations of reduction in infarct size
and clinical improvement have not been con-
firmed in a more extensive clinical trial (Ehren-
reich et al. 2009).4

High doses of rhEpo (Parsa et al. 2004;
Nishiya et al. 2006) and the above-mentioned
Epo derivatives (Fiordaliso et al. 2005; Brines
et al. 2008) confer protection in animal models
of cardiac ischemia/reperfusion and myocardi-
al infarction. Moreover rhEpo is also effective in
protecting the kidney and liver from ischemia/
reperfusion injury (Yang et al. 2003; Patel et al.
2004; Sharples et al. 2004; Sepodes et al. 2006;
Schmeding et al. 2009) as well as other experi-
mental threats to kidney (Vaziri et al. 1994;
Bahlmann et al. 2004) or liver (Le Minh et al.
2007; Schmeding et al. 2008, 2009) integrity.

The salutary effects of rhEpo and derivatives
thereof on experimental models of ischemia
and other types of injury may be due in part
to their effect on the vascular endothelium. In
vitro rhEpo stimulates the proliferation, mobi-
lization, and differentiation of endothelial pro-
genitor and precursor cells (Bahlmann et al.
2003; Heeschen et al. 2003) and also enhances
endothelial cell viability (Chen et al. 2008) and
survival by blocking apoptosis (Bahlmann et al.
2004). Thus, exogenous Epo can significantly
enhance neovascularization induced by inflam-
mation and ischemia (Heeschen et al. 2003).

Perhaps the most puzzling aspect of non-
erythroid effects of Epo is the nature of the
receptor. In erythroid cells, EpoR mRNA is ex-
pressed at sufficiently high levels for abundant
display of EpoR protein on cell surface and
dimerization that is required for high-affinity
Epo binding. In contrast, the mRNA expression
in nonerythroid cells is so low that convinc-
ing demonstration of surface EpoR protein by
immunological means has been problematic
at best. It is very likely that such low-level ex-
pression would not be sufficient for the mass
action needed for EpoR dimerization to occur.
Accordingly, the low-affinity binding site for
Epo may be a heterodimer composed of EpoR
and another partner, perhaps CD131, the b

common cytokine receptor (Brines et al. 2008;
Brines 2010). This may explain the requirement
of high levels of exogenous Epo for biological
effects in nonerythroid cells and possibly how
an Epo derivative could have activity only in
nonerythroid cells.

REGULATION OF THE Epo GENE5

Initial investigation of the molecular basis of
Epo gene regulation was greatly facilitated by
the discovery that the human hepatoma cell
lines Hep3B and HepG2 produce significant
amounts of Epo constitutively, with marked in-
duction in response to hypoxia (Goldberg et al.
1987). The magnitude and time course of the
induction of Epo mRNA paralleled Epo pro-
tein production. More recently, a human renal
cell line has also been shown to display oxygen-
dependent regulation of Epo production (Frede
et al. 2011).

Tissue-specific expression of the Epo gene
and its induction by hypoxia are dependent on
far upstream cis elements and an enhancer ele-
ment downstream from the polyadenylation sig-
nal. Transgenic mice experiments indicate the
presence of element(s) between 0.4 and 6 kb 50

of the promoter, which suppress promiscuous
expression, and element(s) 9.5 and 14 kb up-
stream, which are necessary for kidney-specific

4For more information on Epo and the brain, see reviews by
Jelkmann (2005) and Noguchi et al. (2007).

5For more information on this topic, see review by Fandrey
(2004).
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expression (Semenza et al. 1989, 1990, 1991a;
Madan et al. 1995).

The Epo gene has a weak promoter, owing in
part to suppression of transcription by a GATA
motif (Imagawa et al. 1994, 1997). Mutation of
this response element in a 180-kb Epo transgene
resulted in constitutive in vivo expression in
renal peritubular cells (Obara et al. 2008). En-
hanced binding of GATA-2 to this site may con-
tribute to the inhibition of Epo production by
inflammatory cytokines (La Ferla et al. 2002).
GATA-4 is expressed exclusively in hepatocytes
and binds strongly to this GATA motif, enhanc-
ing Epo expression (Dame et al. 2004). The
marked reduction in expression of hepatic
GATA-4 following birth is likely an important
contributor to the switch in Epo production
from liver to kidney (Dame et al. 2004).

A crucial 30 enhancer (Beck et al. 1991; Pugh
et al. 1991; Semenza et al. 1991b; Semenza and
Wang 1992) binds to two transcription factors,
hypoxia-inducible factor 1 (HIF) and the nucle-
ar receptor HNF-4. As shown in Figure 3, these
two DNA-binding proteins interact with the
transcriptional coactivator p300/CBP, trigger-
ing transcriptional activation.

HIF

Hypoxic induction of Epo depends in large part
on the transcription factor HIF. HIF is activated
in virtually all cells (Maxwell et al. 1993b; Wang
and Semenza 1993b) by exposure to hypoxia, as
well as cobalt or iron chelators. The activation of
HIF enables it to bind to a consensus sequence
(50-TACGTGCT-30) first identified in the Epo 30

enhancer (Fig. 3) (Semenza et al. 1991b). Sub-

sequently, this hypoxia response element has
been identified in more than a hundred genes
and shown to be required for hypoxic induc-
tion of transcription. In addition to Epo, an
impressive number of other physiologically rel-
evant genes are regulated by HIF (Wenger et al.
2005) including those involved in angiogenesis,
intermediary metabolism, and, of particular in-
terest to readers of this collection, iron homeo-
stasis (Peyssonnaux et al. 2007).

Wang and Semenza (1995) purified HIF by
its affinity for the Epo 30 enhancer and showed
that it is a heterodimer composed of a 120 kD a

subunit and a 91–94 kD b subunit. Molecular
cloning revealed that both subunits are basic
helix-loop-helix proteins in the PAS family of
transcription factors (Wang et al. 1995a). HIF-
a, or HIF-1a, is a novel protein, whereas HIF-
1b is the previously cloned and characterized
aryl hydrocarbon receptor nuclear translocator
(ARNT) (Hoffman et al. 1991).

The HIF-a subunit is widespread among
animals, including not only mammals and fish
but also invertebrates such as flies and worms.
In man and other mammals, three homologous
HIF-a genes have been identified: HIF-1a, HIF-
2a (Tian et al. 1997), and HIF-3a (Gu et al.
1998). HIF-1a is the most abundant and pres-
ent in most organs and tissues. In contrast, HIF-
2a has more restricted expression and was orig-
inally thought to be limited to the vascular
endothelium (Tian et al. 1997). Knockout of
HIF-1a in mice is embryonic lethal (Iyer et al.
1998; Ryan et al. 1998), whereas HIF-2a null
mice survive gestation but have impaired sur-
vival owing to phenotypic abnormalities that
are strain-dependent. Most genes that are

–14 kb

KIE

–9.5 kb

Hypoxia

Epo gene
3′ Enh

HNF–4HIF

p300

Figure 3. Diagram of the Epo gene. The five exons of the Epo gene are shown as rectangles with the coding regions
in black. Far upstream of the Epo promoter is a kidney-inducible element (KIE) that is required for high-level
up-regulation of Epo mRNA in the kidney. Just downstream from exon 5 is a critical enhancer that binds to HNF-
4 and also to HIF when the Epo-producing cell is hypoxic. These two transcription factors bind to the tran-
scriptional activator p300. This enhanceosome is a powerful inducer of Epo transcription.
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induced by hypoxia in an HIF-dependent man-
ner require HIF-1a (Warnecke et al. 2004). In
contrast, Epo production and its up-regulation
by hypoxia require HIF-2a (Gruber et al. 2007)
in the kidney (Scortegagna et al. 2005; Kapitsi-
nou et al. 2010; Paliege et al. 2010) and an Epo-
producing renal cell line (Frede et al. 2011), as
well as in the fetal and adult liver (Rankin et al.
2007).

Oxygen Sensing and HIF Activation

To understand the mechanism by which HIF-1
is activated, it is necessary to determine how
hypoxia impacts on the expression of its two
subunits. The steady-state levels of HIF-a
mRNA and ARNT mRNA are not significantly
affected by oxygen tension (Gradin et al. 1996;
Huang et al. 1996; Wood et al. 1996). At the
protein level, the ARNT subunit remains abun-
dant, irrespective of the oxygenation of the cell.
In contrast, the HIF-a subunit cannot be de-
tected in oxygenated cells (Wang et al. 1995b;
Huang et al. 1996). HIF-a protein can only be
detected in deoxygenated cells or in those ex-
posed to iron chelators or certain transition-
metal ions, most notably cobalt, all of which
induce HIF-dependent gene transcription (Se-
menza and Wang 1992; Wang and Semenza
1993a). These observations suggest that the
activation of HIF-1 depends on an increase in
the amount of HIF-a protein in deoxygenated
cells.

In cells exposed to 21% O2, HIF-a is re-
markably unstable (Huang et al. 1996). It forms
a complex with von Hippel–Lindau protein
(vHL) (Maxwell et al. 1999), enabling it to un-
dergo ubiquitination and subsequent degrada-
tion in proteasomes (Salceda and Caro 1997;
Huang et al. 1998). Low oxygen tension abro-
gates this process, thereby allowing the HIF-a
subunit to accumulate so that it can enter the
nucleus and form a stable heterodimer that can
participate in transcriptional regulation. Oxy-
gen-dependent degradation of HIF-a depends
on a large (�200-residue) interior segment
(Huang et al. 1998). When this domain is de-
leted, the protein is stable and capable of trans-
activation, even in oxygenated cells. When this

domain is fused to a foreign protein, it confers
rapid oxygen-dependent degradation.

The oxygen-dependent degradation do-
main of HIF-1a contains two highly conserved
LXXLAP sequences, which are recognition sites
for an oxygen- and iron-dependent prolyl hy-
droxylase that converts the proline into a hy-
droxyproline (Ivan et al. 2001; Jaakkola et al.
2001; Masson et al. 2001; Yu et al. 2001). This
posttranslational modification is necessary and
sufficient for the binding of vHL to HIF-a. As
shown in Figure 4, this interaction enables the
ubiquitin E3 ligase to dock at this complex,
thereby triggering the covalent addition of a
number of small ubiquitin molecules (Cock-
man et al. 2000; Ohh et al. 2000). The poly-
ubiquitinated HIF-a is then recognized by the
proteasome where it is rapidly degraded. Rat-
cliffe and his colleagues (Epstein et al. 2001)
showed that the hydroxylation of these two spe-
cific proline residues is mediated by a dioxyge-
nase that is homologous to classic collagen
prolyl hydroxylase. Shortly thereafter, a human
homolog of HIF prolyl hydroxylase was bio-
chemically purified and characterized (Ivan
et al. 2002). These enzymes have an active center
where an iron atom and a molecule of a-keto-
glutarate interact with a conserved core of two
histidines, an aspartate and an arginine residue.
The two LXXLAP motifs within HIF-a each
bind at this site, along with oxygen, catalyzing
hydroxylation of the proline residue. This oxi-
dative modification is inhibited by iron chela-
tors as well as by cobaltous ion, which presum-
ably displaces iron from the active site. The
effect of the iron chelation and cobalt on the
activity of HIF prolyl hydroxylases provides a
satisfying explanation for how these agents
mimic hypoxia in activating HIF. These en-
zymes are the proximate oxygen sensor for reg-
ulating HIF. Among the three HIF-a prolyl hy-
deroxylases, PHD2 plays the predominant role
at most sites (Berra et al. 2003) including renal
production of Epo (Minamishima et al. 2008;
Takeda et al. 2008).

Hemoglobin is encapsulated in circulating
erythrocytes not only in man and other mam-
mals but also in all other vertebrates. Oxygen
homeostasis in these complex organisms is
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well served by HIF-dependent regulation of a
cytokine that is required for erythropoiesis.
In contrast, in many invertebrate phyla, oxy-
gen transport depends on the presence of free
soluble polymeric hemoglobins in circulating
hemolymph, and in some, hemoglobin produc-
tion is enhanced during hypoxic stress. One of
the most dramatic observations in marine biol-
ogy is the change in the fresh-water crustacean
Daphnia magna from pale gray to bright red
soon after transfer from normoxic to hypoxic
water (Fox 1947, 1949). Two of their four tan-
dem globin genes have been shown to have
functional HIF response elements within their
promoters (Gorr et al. 2004). Thus, in keeping
with the relative simplicity of this organism, the
regulation of oxygen-carrying capacity of the
blood is direct, rather than mediated indirectly
via a cytokine.

HNF-4

Downstream from the HIF-1 binding site, the
Epo 30 enhancer contains two tandem consensus
steroid hormone response elements separated

by 2 bp (Fig. 1). Mutations at these sites either
abolish or markedly inhibit hypoxic induction
of reporter genes (Blanchard et al. 1992; Se-
menza and Wang 1992; Pugh et al. 1994; Hu
et al. 1997). These elements in the Epo enhancer
interact with an orphan nuclear receptor, i.e., a
DNA-binding protein that shares structural ho-
mology with hormone-binding nuclear recep-
tors but lacks a known ligand (Blanchard et al.
1992). The orphan receptor HNF-4 plays a crit-
ical role in Epo gene regulation (Galson et al.
1995; Makita et al. 2001). The expression of
HNF-4 is limited to renal cortex and liver, sites
of Epo production, and also intestine. Thus the
binding of HNF-4 to the Epo enhancer is likely
to contribute to both the high-level induction
of the Epo gene as well as its tissue specificity.

p300

As shown in Figure 1, the carboxy-terminal por-
tion of HIF-1a binds specifically to p300 (Arany
et al. 1996), a general transcriptional activa-
tor that participates in a number of biological
functions such as induction of tissue-specific

PH

UL

pVHL

O2

Fe

HIF prolyl

HIF-α
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Figure 4. Pathway by which the hypoxia-inducible transcription factor is up-regulated by low intracellular
oxygen tension. In normally oxygenated cells, the a subunit (HIF-a) undergoes hydroxylation of two proline
residues, one of which is shown here. In the presence of iron (Fe) and a-ketoglutarate, this oxygen-dependent
posttranslational modification is catalyzed by an HIF-a-specific prolyl hydroxylase (PH). The von Hippel–
Lindau protein (pVHL) binds to hydroxylated HIF-a. Subsequent docking of a ubiquitin ligase (UL) enables
HIF-a to be polyubiquitinated.
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expression, regulation of cell cycle, and stim-
ulation of differentiation pathways. This very
large protein, which is closely homologous to
CREB-binding protein (CBP), does not bind to
DNA but does interact with a number of other
proteins including HNF-4 and other nuclear
receptors. Thus, as depicted in Figure 1, the
HIF-1 heterodimer, activated by hypoxia, par-
ticipates in a macromolecular assembly with
p300 (or a related family member) and with
HNF-4 to transduce a signal to the Epo promot-
er, enabling activation of transcription. It is very
likely that such a combinatorial process ap-
plies not only to Epo but also to other genes
that are induced by hypoxia (Ebert and Bunn
1998). Most, if not all, cells contain a protein
factor called FIH (factor-inhibiting HIF) (Ma-
hon et al. 2001) that hydroxylates an asparagine
at the carboxyl terminus of HIF-a in an oxygen-
and iron-dependent manner, thereby blocking
binding to p300 and inhibiting transcription
(Lando et al. 2002a,b).

IMPACT OF Epo PRODUCTION ON
CLINICAL DISORDERS

In a variety of clinical settings, anemia can be
caused by underproduction of Epo, whereas
erythrocytosis can result from overproduction.

Underproduction of Epo

Patients with renal failure generally develop se-
vere anemia, owing in part to suppression of
erythropoiesis from a buildup of metabolic
wastes and in part to a moderate reduction in
red cell life span. However, the most important
contributor to the anemia of uremia is insuffi-
cient Epo production (Fig. 1B) (Caro et al. 1979;
Cotes 1989). The degree of anemia correlates
roughly with the extent of renal functional im-
pairment. In renal failure owing to awide variety
of etiologies, insufficient Epo production results
either from direct damage to Epo-producing
cells in the kidney or from the suppression of
Epo production by inflammatory cytokines.

Patients with inflammatory disorders have a
less marked impairment of Epo production. Ex-
amples include rheumatoid arthritis (Means

1994), cancer (Miller et al. 1990; Spivak 1994),
and AIDS (Fischl et al. 1990). It is likely that
inflammatory cytokines suppress Epo gene ex-
pression in these disorders.

Exposure to certain metals may result in
disordered structure and function of the renal
proximal tubule, resulting in suppression of
Epo production, out of proportion to impair-
ment of global renal function. Such a pathoge-
netic process is likely the basis for the marked
anemia often encountered in cancer patients
who have been treated with cis-platinum or in-
dividuals suffering from chronic cadmium in-
toxication (Horiguchi et al. 2000). Epo produc-
tion is also inhibited in patients with increased
plasma viscosity owing to monoclonal dyspro-
teinemias (Singh et al. 1993).

Overproduction of Epo

Measurement of plasma Epo is useful in distin-
guishing primary from secondary erythrocyto-
sis (Erslev and Caro 1984; Messinezyet al. 2002).
Individuals with autonomous red cell overpro-
duction due to polycythemia vera (or rarely to
mutations at the carboxyl terminus of EpoR)
have low plasma Epo levels, whereas individuals
with various forms of chronic arterial hypox-
emia have erythrocytosis owing to increased
plasma Epo levels. The highest documented he-
matocrit levels have been observed in patients
with right to left cardiac shunts. The erythro-
poietic response in patients with hypoxemia
owing to chronic obstructive pulmonary disease
is variable, depending in part on whether there
is coexisting infection, which, as explained
above, can suppress erythropoietin expression.

Increased oxygen affinity of red cells causes
impaired delivery of oxygen to tissues and
therefore hypoxia at the cellular level, which
triggers increased Epo expression and therefore
secondary erythrocytosis (Prchal and Prchal
1999). Such a “shift to the left” in the oxyhemo-
globin dissociation curve can be caused by mu-
tations in a- or b-globin subunits or in two red
cell enzymes. Deficiency in cytochrome b5 re-
ductase causes congenital mehemoglobinemia
and mild erythrocytosis. A more pronounced
increase in red cell mass has been reported in
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very rare families with deficiency of bisphos-
phoglycerate mutase that causes a deficit in red
cell 2,3-BPG, acritical modulatorof intracellular
hemoglobin function (Rosa et al. 1978). These
individuals with left-shifted O2-binding curves
are generally asymptomatic because impaired
oxygen delivery is balanced by increased oxy-
gen-carrying capacity.

Occasional individuals have chronic eleva-
tion of plasma Epo that is inappropriate and
autonomous, i.e., not due to arterial hypoxemia
or cellular hypoxia. These individuals usually
have either sporadic or germline mutation in
genes responsible for oxygen sensing and HIF
regulation.

Erythrocytosis due to inappropriate over-
production of Epo can be encountered in vari-
ous neoplasms, particularly those arising in
kidney, liver, and cerebellum, organs that are
physiologic sites of erythropoietin expression.
In particular, secondary erythrocytosis occurs
in patients with renal carcinomas, Wilms tu-
mor, hepatomas, and cerebellar hemangioblas-
tomas. In some cases, the tumor cells secrete
Epo (Jelkmann 1992). In other cases, the sur-
rounding normal kidney or liver tissue secretes
Epo, presumably because of local ischemia.

Highly vascular renal and central nervous
system tumors can arise in families and sporad-
ically owing to mutations in the von Hippel–
Lindau (VHL) gene. As explained earlier in this
article, this protein is required for the oxygen-
dependent degradation of HIF-a. Inactivat-
ing mutations lead to constitutive activation
of HIF-a and therefore overexpression of HIF
responsive genes (Gnarra et al. 1996; Iliopoulos
et al. 1996), particularly vascular endothelial
growth factor (VEGF), which causes the tumors
to have enhanced vascularity. In a subset of af-
fected individuals, overexpression of Epo leads
to erythrocytosis.

A number of families with congenital ery-
throcytosis have been encountered in Chuvash-
ia, a circumscribed region in the Russian Feder-
ation in which there may have been inbreeding
and a high likelihood of a founder effect (Ser-
geyeva et al. 1997; Gordeuk and Prchal 2006).
The erythrocytosis (mean hemoglobin levels of
23 g/dL and hematocrit of 67%) follows an au-

tosomal recessive pattern of inheritance. Affect-
ed individuals have elevated erythropoietin lev-
els, and increased incidence of thrombotic and
hemorrhagic complications. These individuals
are homozygous for a missense mutation at the
carboxyl terminus of the VHL gene (R200W)
leading to HIF activation (Ang et al. 2002).
The clinical phenotype is similar in a R200W
“knock-in” mouse model (Hickey et al. 2007).
Isolated families with congenital erythrocytosis
have been encountered elsewhere that harbor
the R200W mutation (Pastore et al. 2003; Cario
et al. 2005; Perrotta et al. 2006). Affected indi-
viduals are usually homozygotes but some are
compound heterozygotes, having R200Walong
with another VHL mutation (Pastore et al.
2003; Cario et al. 2005).

Families as well as isolated individuals have
been encountered in which erythrocytosis ow-
ing to elevated plasma Epo levels is explained
by heterozygosity for an activating mutation in
HIF-2a (Gale et al. 2008; Martini et al. 2008;
Percy et al. 2008a,b, 2012; Furlow et al. 2009; van
Wijk et al. 2010). These mutations generally im-
pair the ability of HIF-2a to bind to VHL or
PHD2. In other families, affected individuals
are heterozygous for loss-of-function muta-
tions in PHD2 (Percy et al. 2006, 2007; Ladroue
et al. 2008). Genome-wide association studies
comparing lowland Tibetans to highlanders
with erythrocytosis have shown highly signifi-
cant polymorphisms in the vicinity of HIF-2a
(Beall et al. 2010; Yi et al. 2010) and PHD2
(Simonson 2010). Both these selected “experi-
ments of nature” and the broader population
studies, attest to the primacy of HIF-2a and
PHD2 in regulating the Epo gene.

THERAPY WITH rhEpo AND ERYTHROID-
STIMULATING AGENTS6

By far the most common use of rhEpo has been
in patients with chronic renal failure. Over one
million patients worldwide have responded ef-
fectively to either rhEpo or a derivative, darbe-
poietin alfa (Aranesp), which has an enhanced

6For more information on this subject, see reviews by Bunn
(2007), Elliott (2008), and Jelkmann (2008).
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plasma half-life (�22 h) owing to the introduc-
tion of two additional N-linked glycosylation
sites.

The importance of erythropoietin in the
pathogenesis of the anemia of renal failure has
been affirmed by the dramatic efficacy of rhEpo
therapy. Figure 5 shows one of the first cases
treated with rhEpo. Within a few days after
initiation of rhEpo therapy, the hematocrit
approached normal, necessitating a reduction
in dose. The marked increase in red cell mass
following treatment was accompanied by en-
hanced utilization of iron stores, as reflected
in a decline in serum iron and serum ferritin.
Other patients who have normal or low iron
stores before rhEpo therapy need concomitant
administration of iron to achieve an optimal
erythropoietic response.

The other common use of rhEpo has been in
treating anemia in cancer patients with chemo-

therapy-associated anemia. In addition, rhEpo
is effective in AIDs patients who have developed
severe anemia as a result of antiviral therapy. A
minority of patients with myelodysplastic ane-
mia also responds to rhEpo. In some clinics,
rhEpo is used in the management of the ane-
mia of prematurity as well in surgical patients,
in both the preoperative and postoperative pe-
riods.

The impressive efficacy and safety of rhEpo
therapy notwithstanding, a number of prob-
lems warrant careful consideration. The most
evident are the high cost of treatment and the
need for parenteral administration. Of equal
concern are outcome studies on large numbers
of renal dialysis patients showing that doses
of rhEpo and darbepoietin alfa that raise the
hemoglobin level .12 g/dl are associated with
thrombosis of arteriovenous access, impaired
control of hypertension, and a small but sig-
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Figure 5. Response of an anephric patient to recombinant human erythropoietin (rhEpo) therapy. Note that,
before therapy, the patient was severely anemic and transfusion dependent. Treatment with rhEpo resulted in a
reticulocytosis followed by a progressive increase in hemoglobin. The dose of rhEpo had to be lowered to prevent
the hemoglobin from rising too high. Before rhEpo therapy, the patient was severely iron overloaded. The marked
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nificant increase in mortality (Besarab et al.
1998; Singh et al. 2006; Phrommintikul et al.
2007). Cancer patients are inherently at higher
risk to develop thrombosis, but this risk is sig-
nificantly enhanced in those receiving rhEpo
therapy (Bohlius et al. 2006; Bennett et al. 2008).

It is likely that the prothrombotic effects of
rhEpo dose are due to the high doses given rath-
er than to the increase in hemoglobin level. As
mentioned earlier in this article, nonerythro-
poietic effects are widespread and complex. Ear-
ly reports suggest that rhEpo may also promote
enhanced tumor growth in vivo (Henke et al.
2003; Leyland-Jones 2003) and in vitro (Mo-
hyeldin et al. 2005). However, EpoR expression
is low in the great majority of tumors and
though expressed at the mRNA level, it cannot
be detected on the cell surface (Sinclair et al.
2008). Moreover, more recent meta-analyses
mentioned above do not support the notion
that rhEpo therapy promotes tumor progres-
sion in vivo (Bohlius et al. 2006; Bennett et al.
2008).

RECENT DEVELOPMENTS

In view of the above-mentioned concerns re-
garding long-term rhEpo therapy, there has
been increasing interest in developing ery-
throid-stimulating agents that offer advant-
ages over rhEpo and darbepoietin alfa. One ap-
proach entailed the production of a large phage
library expressing short (�15-residue) random
peptides that are then screened for sequences
that bind with relatively high affinity and spe-
cificity to the Epo receptor. This strategy led to
the identification of peptides that lack any ho-
mology with Epo but are active both in vitro and
in vivo in stimulating erythropoiesis through
the same signaling pathway that is triggered by
Epo (Livnah et al. 1996; Wrighton et al. 1996).
However, in contrast to recent progress with
thrombopoietin mimetic agents, little progress
has been made to date in developing these Epo
mimetic peptides into safe and effective drugs.

Another approach involves structural mod-
ification of Epo in the interest of prolonging its
longevity in the circulation. Continuous ery-
thropoietin receptor activator (CERA) is a de-

rivative in which a 30 kDa methoxy-polyethyl-
ene glycol polymer has been covalently linked
to Epo. It has a half-life in the circulation of
�135 h, about sixfold greater than that of dar-
bepoietin alfa (Macdougall 2005; Macdougall
et al. 2006; Provenzano et al. 2007). This attri-
bute greatly reduces the frequency of parenteral
administration. CERA has been through exten-
sive clinical trials and has passed muster in
terms of both safety and efficacy. As a result, it
received approval from the European Commis-
sion and the American Food and Drug Admin-
istration in 2008. However, it has not yet gained
wide use in clinical practice.

The most novel strategy for pharmacologic
stimulation of erythropoiesis involves the acti-
vation of HIF by inhibition of HIF-a prolylhy-
droxylases. As shown in Figure 4, small molecule
analogs of a-ketoglutarate could prevent HIF-a
hydroxylation, even in well-oxygenated cells and
thereby induce expression not only of endoge-
nous Epo but also of other HIF-dependent genes
that are required for robust erythropoiesis. Sev-
eral companies have developed inhibitors that
induce Epo and erythropoiesis in mice (Safran
et al. 2006; Yan et al. 2010) and in humans (Yan
et al. 2010). Because these agents suppress ex-
pression of hepcidin (Volke et al. 2009), they
may be particularly effective in the treatment
of anemia of chronic inflammation. HIF prolyl
hydroxylase inhibitors offer for the first time
the possibility of inexpensive oral therapy for
stimulation of erythropoiesis. Of course, a ma-
jor concern is specificity because such a large
number of genes are regulated by HIF. The lead
compounds that are currently undergoing clin-
ical trials appear to inhibit HIF-2a specifically. If
so, they mayalso enhance duodenal iron absorp-
tion because the divalent metal transporter 1
(DMT1), like Epo, is up-regulated by HIF-2a.
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